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Influence of a resonant surface nonlinearity on the scattering of light
from a randomly rough surface
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Alexei A. Maradudin and Andrei V. Shchegrov
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We study the scattering of light from a one-dimensional, randomly rough surface of a linear dielectric coated
by a thin resonantly nonlinear film. We focus on the coherent scattering phenomena occurring at the frequency
of the incident light and show that the scattering properties of this system can be described by a single,
nonlinear, impedance boundary condition. We obtain thereby a nonlinear integral equation for the electric field
on the surface and present algorithms for its numerical solution in different scattering regimes. We investigate
the effect of nonlinearity on enhanced backscattering from this system, and the effect of random surface
roughness on optical bistability in reflection.@S1063-651X~98!02206-5#

PACS number~s!: 42.25.Fx, 42.65.Pc, 68.35.Ct
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I. INTRODUCTION

Theoretical and experimental investigations of multip
scattering effects in the interaction of light with disorder
nonlinear volume media have been intensively carried
for the past decade. They centered on the enhanced b
scattering effect for second-harmonic light scattered from
disordered dielectric slab@1,2#, difference frequency para
metric mixing of two light beams in a disordered nonline
medium @3#, angular intensity correlation function fo
second-harmonic light generated inside a random dielec
waveguide@4#, and some other related phenomena.

Disordered nonlinear surface systems, like their volu
counterparts, have also attracted a good deal of attention
have proved to manifest coherent multiple-scattering p
nomena. Thus McGurnet al. @5# used a perturbative ap
proach to predict enhanced second-harmonic generatio
light at a weakly rough, clean metal surface that occurs
only in the retroreflection direction but also in the directi
normal to the mean scattering surface. The multiple sca
ing of surface plasmon polaritons, excited by the incid
light on the rough vacuum-metal interface, plays the decis
role in the appearance of both peaks in this theory. This w
stimulated several experimental studies of second-harm
generation in the multiple scattering of light from metal su
faces@6–10#, in which, however, the scattering system w
not a clean random interface between vacuum and a s
infinite metal but the random interface with vacuum of a th
metal film deposited on the planar base of a dielectric pr
through which the light was incident~the Kretschmann at
tenuated total reflection geometry!. The first experimenta
studies of multiple-scattering effects in the second-harmo
generation of light scattered from a clean one-dimensio
vacuum-metal interface were carried out in a series of pa
by O’Donnell and his colleagues@11–13#, in which it was
found that for both weakly and strongly rough surfaces a
is present in the retroreflection direction in the angular
pendence of the intensity of the scattered second-harm
light rather than the peak that occurs in scattering at
571063-651X/98/57~6!/7206~10!/$15.00
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fundamental frequency. This result was in agreement w
the rigorous numerical simulation results of secon
harmonic generation from such surfaces carried out
Leyva-Luceroet al. @14#.

Thus the overwhelming majority of investigations on lig
scattering from nonlinear disordered volumes or surfa
concentrated on the multiple-scattering phenomena that
cur at the generated frequencies~primarily, second har-
monic!. In many nonlinear media~e.g., Kerr media!, how-
ever, the strongest nonlinear effects occur at the frequenc
the incident light. The lack of any quantitative theoretic
results on the multiple scattering of light from such media
caused primarily by the complexity of the theory, even in t
absence of disorder. Nevertheless, efforts in this direction
expected to be rewarding, since such systems exhibit div
and intense physical phenomena even in the absence of
order~e.g., optical bistability!, and in the absence of nonlin
earity ~e.g., the enhanced backscattering effect!. Such non-
linear effects as the switching of the interface from one
which total internal reflection occurs to one that transm
light through it as the intensity of the incident light is in
creased, and bistable reflection of light from it, were p
dicted and subsequently observed experimentally@15#. It is
of considerable practical importance to know how the ra
domness of the interface affects these and other nonlin
effects occurring at it. A somewhat qualitative discussion
this question has been presented recently by Bass and F
ikher @16#, but with no quantitative results. Another questio
of interest is how nonlinearity affects the enhanced ba
scattering of light from a random surface.

In this paper we study quantitatively the scattering
s-polarized light from the one-dimensional random surfa
of a semi-infinite linear dielectric medium on which a th
nonlinear semiconducting film of constant thickness is
posited. The frequency of the incident light is assumed to
close to that of the excitonic resonance in the film, so that
reflecting and absorbing properties of the surface are v
sensitive to the intensity of the incident electromagnetic fi
and to the resulting field distribution on the rough vacuu
7206 © 1998 The American Physical Society



-
,
to
-
-

y
si
d
r

pt
he
ea
io

an
rv
e
e
k
th

gh
p
m
e
o
d

ea
nd
a
in
th
ed
nt
re
o
o
th
fo
. I
f
em

e
tio
e
ac
at
n
e
a

th
te
th
ic
n
b

th
h
e

in

. 1.

e

rties

real-

ion

ce

atic
d of

n-
t.
on-
i-

ple
by

d

ore

57 7207INFLUENCE OF A RESONANT SURFACE . . .
~nonlinear! dielectric interface. This nonlinear, thin film sys
tem was chosen because~i! it is experimentally realizable
~ii ! the equations that have to be solved can be reduced
tractable form in this case,~iii ! nonlinear planar layered sys
tems are known@17# to display the effect of optical bistabil
ity in the reflection of light, and~iv! rough film systems
provide an additional degree of freedom compared to s
tems with a single rough interface, and therefore allow ea
manipulating with parameters of the system to achieve
sired scattering characteristics or even produce new cohe
scattering phenomena@18–20#.

Finally, there is a methodological consideration prom
ing this work. In a rigorous computer simulation study of t
scattering light from, and its transmission through, a lin
film with one-dimensional random surfaces, the applicat
of Green’s second integral identity in the plane@21# yields
the result that the value of the electromagnetic field at
point in space is given in terms of integrals along the cu
bounding the film. In contrast, when the film is characteriz
by a nonlinear dielectric function instead of by a linear on
these line integrals are supplemented by an integral ta
throughout the area bounded by the curves along which
line integrals are evaluated, in which the field being sou
enters the integrand nonlinearly. The result is a very com
tationally intense problem. In the present case we overco
this problem, at least in part, by assuming that the thickn
of the nonlinear film is small compared to the wavelength
the incident light, and using an impedance boundary con
tion at the interface between the nonlinear film and the lin
substrate, to derive an effective, nonlinear, boundary co
tion that the electromagnetic field in the vacuum region s
isfies on the surface of the substrate. In this way we obta
single, one-dimensional, nonlinear integral equation for
value of the electric field on the surface, which is solv
numerically for a given value of the intensity of the incide
field. The angular dependence of the intensity of the cohe
and incoherent components of the scattered light are
tained by repeating this calculation for a large number
realizations of the random surface profile and averaging
results over this ensemble. This program is carried out
each of a set of values of the intensity of the incident field
is hoped that this approach will be useful in the solution o
variety of scattering problems in which the scattering syst
is a thin nonlinear film with one or two random surfaces.

The outline of this paper is the following. In Sec. II w
describe the scattering system and write the basic equa
and the boundary conditions for the electric field. We th
specify the form of the incident field and define the char
teristics of the scattered intensity we are going to calcul
In Sec. III we derive the effective nonlinear boundary co
dition for the electric field in the vacuum region. We will us
this boundary condition in Sec. IV to derive the nonline
integral equation for the electric field on the surface of
substrate. This integral equation is then reduced to a sys
of coupled, nonlinear, algebraic equations with the aid of
method of moments. In Sec. V we discuss the numer
solution of this nonlinear system of equations in differe
scattering regimes, in particular, the regime when optical
stability is present. We also present numerical results
illustrate modification of the enhanced backscattering p
nomenon due to nonlinear effects. Finally, in Sec. VI w
a
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present the conclusion drawn from the results obtained
this work.

II. FORMULATION OF THE SCATTERING PROBLEM:
GEOMETRY AND BASIC EQUATIONS

The physical system we investigate is depicted in Fig
It consists of vacuum in the regionx3.z(x1)1D ~region I!,
a nonlinear semiconductor film in the regionz(x1)1D.x3
.z(x1) ~region II!, and a linear dielectric substrate in th
region x3,z(x1) ~region III!. The surface profile function
z(x1) is assumed to be a single-valued function ofx1, that is
a stationary Gaussian process defined by the prope
^z(x1)&50 and ^z(x1)z(x18)&5d2W(ux12x18u), where the
angle brackets denote an average over the ensemble of
izations of the surface profile andd5A^z2(x1)& is the rms
height of the surface. The surface height autocorrelat
function is assumed to be given byW(ux1u)5exp(2x1

2/a2),
where a is the transverse correlation length of the surfa
roughness.

We consider the steady-state scattering of monochrom
light, and assume the time dependence of the electric fiel
the form E(x;t)5E(x)exp(2ivt), where x5(x1 ,x2 ,x3) is
the position vector andt is time. We suppress the depe
dence onv in E(x) since no other frequencies are presen

We model the steady-state material response of the n
linear semiconductor film by introducing the nonlinear d
electric function

« f~v;uEu2!5«`

vL
22v22 ivg2a~v!uEu2

vT
22v22 ivg2a~v!uEu2

, ~1!

which depends on the frequencyv and the local intensity
uEII(x)u2 of the field in the film. In Eq.~1! «` is the optical
frequency dielectric constant,vT is the frequency of the
transverse exciton of infinite wavelength,vL is the frequency
of the longitudinal exciton of infinite wavelength,g is the
damping rate of the transverse excitonic modes, anda(v) is
the frequency-dependent nonlinear parameter. An exam
of a material whose dielectric properties can be described
the function~1! is AlGaAs @22#. The substrate is describe
by a linear, real, and positive dielectric function«(v).

We will study the scattering of ans-polarized electromag-
netic field, since the enhanced backscattering effect is m
pronounced ins polarization than inp polarization in the
scattering from dielectric substrates@23#. The plane of inci-
dence fors-polarized light is thex1x3 plane and the only,

FIG. 1. Scattering geometry.
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7208 57LESKOVA, MARADUDIN, AND SHCHEGROV
nonzero Cartesian component of the electric field is perp
dicular to the plane of incidence and satisfies the equatio

F ]2

]x1
2

1
]2

]x3
2

1
v2

c2 GE2
I ~x1 ,x3!50, x3.z~x1!1D ~2a!

F ]2

]x1
2

1
]2

]x3
2

1« f~v,uE2
IIu2!

v2

c2 GE2
II~x1 ,x3!50,

z~x1!1D.x3.z~x1! ~2b!

F ]2

]x1
2

1
]2

]x3
2

1«~v!
v2

c2 GE2
III ~x1 ,x3!50, x3,z~x1!

~2c!

together with the boundary conditions that the field and
normal derivative are continuous across the interfaces,

E2
I
„x1 ,z~x1!1D…5E2

II
„x1 ,z~x1!1D…, ~3a!

E2
II
„x1 ,z~x1!…5E2

III
„x1 ,z~x1!…, ~3b!

F2z8~x1!
]

]x1
1

]

]x3
GE2

I ~x1 ,x3!ux35z~x1!1D

5F2z8~x1!
]

]x1
1

]

]x3
GE2

II~x1 ,x3!ux35z~x1!1D ,

~3c!

F2z8~x1!
]

]x1
1

]

]x3
GE2

II~x1 ,x3!ux35z~x1!

5F2z8~x1!
]

]x1
1

]

]x3
GE2

III ~x1 ,x3!ux35z~x1! .

~3d!

We assume that the scattering system is illuminated fr
the vacuum side by a plane wave, described by the ele
field

E2
I ~x1 ,x3! inc5Aexp$ i ~v/c!~x1sinuk2x3cosuk!%, ~4!

where the constantA is the real amplitude of the inciden
wave anduk is the angle of incidence. The magnitude of t
total, time-averaged incident fluxPinc is given by

Pinc5L1L2

cA2

8p
cosuk , ~5!

whereL1 andL2 are the lengths of the surface in thex1 and
x2 directions, respectively.

To find the far-field scattered intensity in the vacuum,
to a certain point we can follow the route developed in
linear theory@24#. Namely, we apply Green’s second integr
identity to region I to obtain the time-averaged incident fl
scattered into an angular intervalduq about the scattering
direction defined by the angleuq :

Psc~uk ,uq!5L2

c2

64p2v
ur ~uk ,uq!u2, ~6!
n-
s

s

m
ric

e
l

where the scattering amplituder (uq ,uk) is given by

r ~uq ,uk!5E
2`

`

dx1 expH 2 i
v

c
$x1sinuq

1@z~x1!1D#cosuq%J
3F i

v

c
@z8~x1!sinuq2cosuq#E

I~x1!2F I~x1!G .
~7!

The dependence ofr (uk ,uq) on the angle of incidenceuk is
implicit, through the source functions

EI~x1![E2
I
„x1 ,z~x1!1D…, ~8a!

F I~x1![F2z8~x1!
]

]x1
1

]

]x3
GE2

I ~x1 ,x3!ux35z~x1!1D .

~8b!

We characterize the scattered intensity by the average o
differential reflection coefficient~DRC!, which gives the
fraction of the total energy incident onto the surface tha
scattered into an angular intervalduq aboutuq :

^]R/]uq&5^Psc~uk ,uq!/Pinc&. ~9!

In the absence of the nonlinear film, this function is know
@23# to display an enhanced backscattering peak, associ
with the diffuse component of the scattered light, and a
pearing due to the constructive interference of multiply sc
tered waves provided the roughness parametersd anda are
of the order of the wavelengthl52p/c.

With the aid of Eq.~5! and Eq.~6! we rewrite Eq.~9! as

^]R/]uq&5F8pv

c
L1A2cosukG21

^ur ~uk ,uq!u2&. ~10!

Therefore to calculate the mean DRC we need to calcu
the source functions~8!, which yield r (uk ,uq) through Eq.
~7!. To do that, we have to solve Eqs.~2! with the boundary
conditions~3! for the incident field~4!. Although the meth-
ods of solution of the linear problem forEI(x1) andF I(x1)
are well developed at the present time, e.g., the metho
moments@24,20#, no nonlinear version of these methods h
existed until now. In the next sections we develop a meth
that allows calculating the source functions in the case w
the nonlinear film is so thin that nonlinear effects can
taken into account by an appropriate modification of t
boundary conditions at the vacuum-linear dielectric int
face.

III. NONLINEAR EFFECTIVE IMPEDANCE BOUNDARY
CONDITION FOR THE ROUGH DIELECTRIC

SURFACE COATED BY A THIN NONLINEAR FILM

Typically for nonlinear problems, it is hopeless to look f
the general solution of the scattering problem formulated
the preceding section. Instead, one tries to specify the ra
of system parameters, in which most of the interesting ph
cal phenomena are displayed and in which the general e
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57 7209INFLUENCE OF A RESONANT SURFACE . . .
tions can be reduced to a more tractable form. This is
approach that will be taken here. We first assume that
film thicknessD is small compared to the wavelengthl of
the incident light. This will allow deriving nonlinear effec
tive boundary conditions atx35z(x1) that approximately re-
late the field and its normal derivative in the vacuum to th
counterparts in the dielectric. Thus one will be able to wr
the general solution for the field everywhere, since the b
nonlinear medium will be excluded from the problem. Se
ond, we consider a physically interesting frequency reg
around the frequencyvT of the excitonic resonance in th
film, so that the reflecting and absorbing properties of
surface become very sensitive to the amplitude of the in
dent field and the resulting field distribution on the rou
surface. Finally, we assume that the magnitude of the im
nary optical skin depthd5(c/v)@2«(v)#21/2 of the sub-
strate is small compared tol. This assumption allows writ-
ing an approximate local relation@23# between the electric
field and its normal derivative in region III, evaluated atx3
5z(x1)2D,

F2z8~x1!
]

]x1
1

]

]x3
GE2

III ~x1 ,x3!ux35z~x1!

5K~x1!E2
III ~x1 ,x3!ux35z~x1! , ~11!

where

K~x1!>
f~x1!

d F11
d

2

z9~x1!

f3~x1!
2

d2

8

@z9~x1!#2

f6~x1!
G ~12!

is the local surface impedance andf(x1)5$1
1@z8(x1)#2%1/2. This last assumption is not very essential
our analysis~unlike the first one!, but is very useful since it
halves the number of equations to be solved numerically
saves a great deal of computer time. The utility of the i
pedance boundary condition~11! in computer simulation
studies of the scattering of light from randomly rough line
dielectric surfaces was demonstrated by Maradudin
Méndez@23#.

We will now show that in the case of a thin nonlinear fil
one can simplify the system of equations~2! with the bound-
ary conditions~3! considerably. Namely, we will reduce th
problem to the solution of just two equations in the regio
x3.z(x1) ~vacuum! and x3,z(x1) ~linear dielectric!, and
two effective boundary conditions that take into account
influence of the thin nonlinear film. We will then furthe
simplify the problem by using the impedance approximati
The method of effective boundary conditions proves to
very useful for linear electromagnetic problems where t
films are present@25#, although it has not yet been used
the context of scattering from rough films. Here we deve
this method for the scattering of light from a random
rough, thin, nonlinear film deposited on a linear substrate

Assuming that the electric field inside the film chang
little in the x3 direction, we expand both sides of Eq.~3c! in
the vicinity of x35z(x1) to first order inD:
e
e

r

lk
-
n

e
i-

i-

d
-

r
d

s

e

.
e
n

p

s

F2z8~x1!
]

]x1
1

]

]x3
G u@E2

I 2E2
II#ux35z~x1!

52DF ]2

]x1]x3
1

]2

]x3
2G @E2

I 2E2
II#ux35z~x1! . ~13!

Since we seek an approximate relation betweenE2
I andE2

III

at x35z(x1), we use Eq.~3d! in the left hand side of Eq.
~13! and replaceE2

II by E2
III . Then, we notice that

z8~x1!
]

]x3
5H ]

]x1
1z8~x1!

]

]x3
J 2

]

]x1
,

where the term in the curly brackets is the tangential deri
tive. Since tangential derivative of the field is continuo
across the interfaces, we obtain to first order inD

F2z8~x1!
]

]x1
1

]

]x3
G@E2

I 2E2
III #ux35z~x1!

52DF ]2

]x1
2

1
]2

]x3
2G @E2

I 2E2
II#ux35z~x1! . ~14!

We next use Eqs.~2a!, ~2b!, and~3a! in the right hand side of
Eq. ~14!, keeping only the terms of zeroth order inD in the
fields, since the right hand side itself is already proportio
to D, and obtain

F2z8~x1!
]

]x1
1

]

]x3
G@E2

I 2E2
III #ux35z~x1!

5D
v2

c2
@12« f~v,uE2

I u2!#E2
I ux35z~x1! . ~15!

This is the first of the two effective boundary conditions. T
second one is obtained by expanding both sides of Eq.~3a!
in the vicinity of x35z(x1),

E2
I ux35z~x1!1D

]

]x3
E2

I ux35z~x1!

5E2
IIux35z~x1!1D

]

]x3
E2

IIux35z~x1! . ~16!

We notice that

]

]x3
[

1

f~x1!F ]

]n
1

]

]tG , ~17!

where]/]n and ]/]t are the normal and tangential deriv
tives on the surfacex35z(x1), respectively. Since both
]E2 /]n and]E2 /]t are continuous across the interfaces
the s-polarized field, we have the following result correct
first order inD:

E2
I ux35z~x1!5E2

III ux35z~x1! . ~18!

This is the second effective boundary condition that conne
the fields in the media I and III. Thus we have simplified t
scattering problem, since we now need to solve only lin
differential equations in regions I and III, and the nonlinea
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7210 57LESKOVA, MARADUDIN, AND SHCHEGROV
ity is present only in the effective boundary condition~15!.
We simplify the problem even more by using the impedan
boundary condition~11! in Eqs. ~15! and ~18!. As a result,
we obtain a single, nonlinear effective impedance bound
condition for the electric fieldE2

I :

F2z8~x1!
]

]x1
1

]

]x3
GE2

I ux35z~x1!

5Keff~x1 ,uE2
I u2!E2

I ux35z~x1! , ~19!

where

Keff~x1 ,uE2
I u2!5K~x1!1

v2

c2

D

f~x1!
@12« f~v,uE2

I u2!#

~20!

is the local nonlinear effective impedance, and the local
ear impedanceK(x1) is given by Eq.~12!.

IV. METHOD OF MOMENTS

We will next employ the effective boundary conditio
~19! to obtain the nonlinear integral equation f
E2„x1 ,z(x1)… — the source function that completely dete
mines the scattered field in the vacuum. The standard wa
deriving a closed system of integral equations for the fi
E2(x1 ,x3) and its normal derivative at the interface, dev
oped in the linear theory@24#, fails when the problem in-
volves a bulk nonlinear medium. However, since in our f
mulation of the problem the nonlinearity now enters on
through the effective boundary condition~19!, the derivation
can be done in the same way as in the linear case@24#, with
the result

E~x1!5E2
I
„x1 ,z~x1!) inc1E

2`

`

dx18@H0~x1ux18!E~x18!

2L0~x1ux18!F~x18!#, ~21!

where the source functionsE(x1) andF(x1) are now defined
by

E~x1![E2
I
„x1 ,z~x1!…, ~22a!
e

ry

-

of
d
-

-

F~x1![F2z8~x1!
]

]x1
1

]

]x3
GE2

I ~x1 ,x3!ux35z~x1! ,

~22b!

the kernelsH0 andL0 are expressed in terms of the Hank
function of the first kind,

H0~x1ux18!5
i

4F2z8~x1!
]

]x18
1

]

]x38
GH0

~1!H v

c
$~x12x18!2

1@z~x1!2x381h#2%1/2J U
x35z~x

18!

, ~23a!

L0~x1ux18!

5~ i /4!H0
~1!H v

c
$~x12x18!21@z~x1!2z~x18!1h#2%1/2J ,

~23b!

andh is a positive infinitesimal. Using the effective boun
ary condition~19!, we obtain a single integral equation fo
E(x1):

E~x1!5E2
I
„x1 ,z~x1!…inc1E

2`

`

dx18@H0~x1ux18!

2Keff„x1 ,uE2~x1!u2
…L0~x1ux18!#E~x18!. ~24!

In the method of moments, we replace the infinite range
integration by the finite range (2L/2,L/2) and divide the
latter into N equal intervals. The functions in Eq.~24! are
calculated at the midpoints of these intervals,xn52L/2
1(n21/2)Dx (n51,2,3, . . . ,N), where Dx5L/N, as de-
scribed by Maradudin and Me´ndez for the linear problem
corresponding in our case toD50. The integral equation is
then converted into the matrix equation,

E~xm!52E2
I
„xm ,z~xm!…inc1 (

n51

N

Mmn„uE~xn!u2…E~xn!,

~25!

where
Mmn55
DxS 2

i

2Dv2

c2

H1
~1!
„~v/c!$~xm2xn!21@z~xm!2z~xn!#2%1/2

…

~v/c!$~xm2xn!21@z~xm!2z~xn!#2%1/2

3$~xm2xn!z8~xn!2@z~xm!2z~xn!#%2DxS i

2DKeff„xn ,uE~xn!u2…

3H0
~1!
„~v/c!$~xm2xn!21@z~xm!2z~xn!#2%1/2

…, mÞn

Dx
z9~xm!

2pf2~xm!
2DxS i

2DKeff„xm ,uE~xm!u2
…H0

~1!S v

c

f~xm!Dx

2e D , m5n.

~26a!

~26b!
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57 7211INFLUENCE OF A RESONANT SURFACE . . .
The remaining problem is to solve Eq.~25! for E(xm) for
each realization of the surface profilez(x1), which can be
generated for givend anda by standard algorithms@24#. The
solution should be used to calculate the scattering amplit
r (uq ,uk), which is now written as

r ~uq ,uk!5Dx (
m51

N

expH 2 i
v

c
@xmsinuq1z~xm!cosuq#J

3F i
v

c
@z8~xm!sinuq2cosuq#

2Keff„xm ,uE~xm!u2
…GE~xm!. ~27!

This procedure should be performed for a large numberNp
of realizations of the surface profile to do the ensemble
eraging in Eq.~10!.

The numerical solution of the set ofN equations~25!
proves to be much more complicated than it is in the lin
problem, that just requires the use of any standard lin
matrix equation solver. Our numerical simulations of the f
cases of physical interest, presented in the next section
dicate that the method for each scattering regime
strength of nonlinearity should be carefully and appropriat
chosen. Methods which may work perfectly in some regim
fail in other cases, especially when multiple solutions
present.

V. NUMERICAL SOLUTION AND RESULTS

A. Dielectric properties of the AlGaAs/GaAs system

We first discuss the dielectric properties of the scatter
system. In our numerical calculations we assume that
substrate is GaAs, whose dielectric constant« is frequency
independent. This assumption holds for the frequencies
ficiently higher than the frequencyvL of the longitudinal
exciton in GaAs, where«(v) is just given by its limiting
value«`512.6. We choose AlGaAs for the film, whose d
electric properties can be modeled by the resonant diele
function ~1!. This choice of the scattering system is stim
lated by the wide use of AlGaAs/GaAs structures in mod
technology and experiment@22#. The properties of Eq.~1!
for AlGaAs are characterized by«`512.6, and the values o
vL512 219.6 cm21 and vT512 219 cm21 that are very
close to each other@26#. The values of the damping consta
g and nonlinear parametera(v) can be regulated by chang
ing the temperature of the system@22#. The characteristic
value ofg for AlGaAs is very small, typically of the order o
1025vT , and this also makes the use of AlGaAs in studyi
resonant nonlinear phenomena very attractive.

We will adopt the convention of normalizing the amp
tude of the electric field to the valueE0 that yields the typical
experimental value@22# of the field intensity (c/4p)E0

2

5104 W/cm2. The typical value of the parametera(v) in
the vicinity of resonant frequencyvT , estimated from the
experimental data of Parket al. @22#, is given byaE0

2/vT
2

'10241 i1025. Note that the sign of the imaginary part ca
be positive or negative, depending on the frequencyv and
the temperature of our system.
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The behavior of« f(v,uEu2) as a function ofuEu2 for a
fixed frequency can be very different depending on h
close we are tovT and whetherv is above or belowvT . We
illustrate this variety by considering three values ofv,
namely, v51.000 01vT , v50.9999vT , and v
50.999 99vT , shown in Figs. 2~A! 2~B!, and 2~C!, respec-
tively. One sees from these examples that different local fi
intensities can cause the film to behave like a metal, or lik
dielectric, can cause very high absorption or almost no
sorption. We now turn to the use of these three illustrat
cases in our numerical solution of the scattering problem

B. The use of iterative techniques in the study of the enhanced
backscattering effect in the presence of nonlinearity

To investigate the role of nonlinearity in the multiple sca
tering of light, we assume the surface to be very rough, w
parametersd51.6 mm anda52.65mm, since the scattering
of light whose frequency is near tovT from such a surface
with no nonlinear film gives rise to a well-pronounced e
hanced backscattering peak. We study the effect cause
the presence of an AlGaAs film of thicknessD510 nm, and
first consider the scattering ofs-polarized light of frequency
v51.000 01vT . The dielectric function of the film at this
frequency, plotted versus the field amplitude, is shown
Fig. 2~A!.

In the numerical solution of the nonlinear matrix equati
~25! for E(xm) we applied the following algorithm. We
started by taking a small amplitude of the incident fie
Amin50.05E0 to ensure that the nonlinear term in the effe
tive impedance~20! is negligible and solved the matrix equa
tion ~25! in the absence of the nonlinearity exactly, assum
the number of points on the surface to beN5300 and the

FIG. 2. Real and imaginary parts of the dielectric functi
« f(v;uEu2) of the nonlinear AlGaAs film plotted versus the fie
amplitudeE normalized to the characteristic amplitudeE0 at a fixed
frequency v: ~A! v51.000 01vT , ~B! v50.99 99vT , ~C! v
50.999 99vT .
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7212 57LESKOVA, MARADUDIN, AND SHCHEGROV
length of the surface along thex1 direction to beL530 mm.
Then we increased the incident field amplitudeA by the
small stepDA50.05E0 and substituted the arrayE(xm) ob-
tained at the preceding step intoKeff„xm ,uE(xm)u2…. We
solved the resulting linear matrix equation forE(xm), used
the solution to calculateKeff„xm ,uE(xm)u2…, and repeated the
iterations over and over until convergence was reached~usu-
ally no more than four iterations were needed to reach
accuracy of 2%!. Only then did we increase the amplitude
the incident fieldA by the same small amount. For this ne
value of A we repeated the iteration procedure again, a
continued increasingA up to the desired large value~in this
case we tookAmax510E0, where the nonlinear response
the system reached saturation!. For each value ofA the cal-
culated functionE(x1) was used to find the other sourc
functionF(x1), with the aid of Eq.~19!, and then both func-
tions were used to calculate the scattering amplitu
r (uq ,uk). We then repeated the same procedure, but n
decreasing the amplitudeA from Amax to Amin to see if any
difference between the direct and reverse iterations exi
due to possible hysteresis behavior, and found none.
were able to find therebyr (uq ,uk) for any amplitudeA of
the incident field forNp52000 realizations of the surfac
profile and to calculate the mean DRC from Eq.~10! by
averaging the results over the ensemble of realizations
z(x1) for each fixedA.

Figure 3 shows the mean DRC for four different amp
tudes of the field incident atuk510° on the scattering sys
tem. Nonzero values of the DRC atuk5690° appear due to
the use of the effective boundary conditions, and corresp
to the energy captured inside the film. We see that the he
of the enhanced backscattering peak decreases as we inc
A and then begins to increase until it saturates. This non
ear effect, somewhat better illustrated in Fig. 4, show
^]R/]uq& versusA for uq5210° ~retroreflection direction!
anduq530°, can be explained as follows.

FIG. 3. Mean differential reflection for the light of frequenc
v51.000 01vT scattered from a system characterized byd51.6
mm, a52.65mm, D5100 Å. The number of points on the surfac
is N5300 and the number of realizations isNp52000. The incident
beam is described by the angle of incidenceuk510°, and amplitude
A, which is ~a! 0.25E0, ~b! 3E0, ~c! 6E0, and~d! 9E0.
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The behavior of« f(v;uEu2) shown in Fig. 2~A! implies
that the incident wave of low intensity ‘‘sees’’ essentially
thin metallic film deposited on a dielectric substrate. Co
versely, the wave of high intensity effectively is likely t
give rise to the field of high intensity in the film, and th
effective dielectric constant of the film is close to«` . The
wave incident from the vacuum interacts more strongly w
the medium whose optical density differs significantly fro
that of the vacuum. This is why the enhanced backscatte
peak that occurs due to the constructive interference of
multiply scattered waves is known@24# to be most intense
for metals with a large and negative dielectric constant
dielectrics with a large and positive dielectric consta
Therefore we expect the scattered intensity to have
maxima in the limitsA→0 andA→`, whereA is the am-
plitude of the incident field. Figure 4 shows that the effect
most visible in the vicinity of the backscattering peak, whi
accumulates contributions from the waves that undergo s
eral nonlinear interactions.

We next look at the scattering of light from the sam
system, but at the frequencyv50.9999vT . Figure 2~B! il-
lustrates the experimental fact that at the frequencies
belowvT the absorption in AlGaAs becomes important. Ne
ther very low nor very highA’s can yield a field distribution
inside the film that gives rise to noticeable absorption
only the intermediate values can. The computer simulat
carried out by the iterative technique developed for the c
~A! confirms this expectation. Figure 5, which prese
^]R/]uq& for uk510°, uq5210° and uk510°, uq530°,
demonstrates that the resonant absorption in the film s
presses the scattered intensity in the vacuum for intermed
values ofA. Again, the effect is especially pronounced f
the multiply scattered component of the scattered light.

Both cases considered above illustrate that nonlinear
fects can lead to rather significant changes in the far-fi
scattered intensity. As long as there are no multiple so
tions, the combination of a linear matrix equation solver w

FIG. 4. Function̂ ]R/]uq& versus the amplitude of the inciden
field for fixed angles of incidence and scattering:uk510°, uq5
210° ~solid line!, anduq530° ~dashed line!. The parameters of the
system are the same as in Fig. 3 andv51.000 01vT .
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57 7213INFLUENCE OF A RESONANT SURFACE . . .
an iterative technique described above gives a robust
efficient way of solving the scattering problem numerical

C. Scattering from a rough surface in the presence of optical
bistability. Kirchhoff approximation

We, finally, consider the case when Eq.~25! allows more
than a single solution. To do this, we set the frequency v
close to the resonance:v50.999 99vT . The dielectric func-
tion of the film at this frequency is shown in Fig. 2~C!.

We first note that the film of AlGaAs withD510 nm,
deposited on a GaAs substrate, gives a bistable resp
when there is no surface roughness (d50). The total field in
the vacuum in this case can be written as

E2
I ~x1 ,x3!5Aexp$ i ~v/c!~x1sinuk2x3cosuk!%

1AR0~uk ,uAu2!exp$ i ~v/c!~x1sinuk

1x3cosuk!%, ~28!

where the first term gives the incident field and the sec
term gives the reflected field and is defined by the intens
dependent, complex Fresnel coefficientR0(uk ,uAu2). A
straightforward solution forR0(uk ,uAu2) gives a curve that
displays a non-single-valued dependence onA for all angles
of incidence uk . In Fig. 6 we plot the reflectivity
zR0(uk ,uAu2) z2 for the case of normal incidence,uk50°.
This dependence has a characteristic bistable form~absent
for the casesv51.000 01vT andv50.9999vT , by the way!
with the unstable part shown by the dashed line.

The presence of optical bistability significantly hampe
the numerical solution of the scattering problem. The ite
tion scheme described in the preceding subsection and o
iteration techniques we tried showed either poor or no c
vergence. The use of more sophisticated numerical meth
is impeded by the large numberN5300 of coupled nonlinea
equations to be solved for at least 1000 realizations of
surface profile and for at least 20 values of the amplitude
the incident field.

To find out whether bistable response still exists in
presence of surface roughness, we apply the Kirchhoff

FIG. 5. Same as Fig. 4 but forv50.9999vT .
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proximation. In the linear case this approximation is know
to be applicable only to smooth surfaces whose typical rad
of curvature is greater than the wavelength of the incid
light. In this approximation, the incident plane wave is r
flected from a plane tangent to the surface at each po
according to Eq.~28!. Omitting the details, which can b
found in the paper by Sentenac and Maradudin@27# in the
linear case, we point out the essential part peculiar to
nonlinear problem and caused by the non-single-val
Fresnel coefficientR0(uk ,uAu2) as a function ofA. We
solved this problem by defining two single-valued Fres
coefficients, and the scattered fields associated with th
coefficients:~i! ‘‘forward,’’ defined by the curveABCEF in
Fig. 6, and~ii ! ‘‘backward,’’ defined by the curveFEDBA
in Fig. 6.

In our numerical simulations we assumed the roughn
parameters to be given bya54 mm andd50.5 mm and 1
mm ~the latter being on the edge of applicability of th
Kirchhoff approximation!. First of all, we checked the valid
ity of the Kirchhoff approximation by substituting the value
of E(xm) obtained into the original equation~25! and found
that both the ‘‘forward’’ and ‘‘backward’’ solutions satisfie
Eq. ~25! quite well. Then we calculated the mean DRC f
normal incidence and obtained that the hysteresis loop
observed in the entire range of the scattering angles. Sev
examples of this behavior are shown in Fig. 7. The comp
son of the absolute values of the DRC shows the expe
results: rougher surfaces produce the scattered inten
which is more uniformly distributed between the small a
large scattering angles than it is in the case of less ro
surfaces.

Thus the single-scattering component, calculated with
aid of the Kirchhoff approximation, displays the bistable e
fects existing in the reflection from the planar system. T
question of the fate of optical bistability in the regime
strong multiple scattering has to be specially studied in
future. The most likely outcome, in our opinion, is the de
radation of bistable effects since, for a very rough surfa
the local responses of different parts of the surface can
very different, and the bistable effects can be washed ou
the accumulated response.

VI. CONCLUSIONS

This paper presents, to our knowledge, the first quant
tive investigation of the multiple scattering of light from th

FIG. 6. Bistable reflectivity for planar (d50) film of thickness
D510 nm at normal incidence andv50.999 99vT .
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7214 57LESKOVA, MARADUDIN, AND SHCHEGROV
randomly rough surface of a nonlinear medium. The wo
was directed at the following as yet unstudied physical p
nomena:~i! the coherent enhanced backscattering effec
rough surface scattering in the presence of nonlinearity,
~ii ! bistability in reflection in the presence of random roug
ness. The theoretical investigation of such nonlinear sca
ing problems is always very difficult and cannot be trea
by conventional ‘‘linear’’ methods, since it is impossible
write a general expression for the electromagnetic field i
nonlinear medium. The methods of deriving integral eq
tions for the fields at the interfaces fail as long as one de
with a bulk nonlinear medium. Therefore additional, me
odological, subjects of this work were~iii ! the derivation of
equations that give an adequate description of physical p
nomena~i! and ~ii !, and have a form tractable to numeric
analysis; and~iv! development of numerical algorithms fo
solving these equations.

We first showed that the nonlinear scattering problem
greatly simplified when the nonlinearity is localized in a th
layer near the surface — in our work this was modeled
the presence of a thin nonlinear film on the randomly rou
surface of a semi-infinite linear substrate. We demonstra
that in the case when the film thickness is small compare
the wavelength of the incident light, the presence of a t
nonlinear film can be taken into account through nonlin
effective boundary conditions on the surface of a linear s
strate. For the case of ans-polarized wave incident on th
one-dimensional rough surface of a nonlinear film depos
on a substrate we derived these effective boundary co
tions @Eqs. ~15! and ~18!#. Under the assumption that th
substrate is significantly optically denser medium than
medium of incidence~vacuum!, we used these boundar
conditions to derive a single, nonlinear, impedance bound
condition for the electric field. Finally, with the aid of thi
boundary condition to obtain a single, nonlinear, integ
equation~24! for the electric field on the surface of the su
strate under the assumption that the substrate has a m

FIG. 7. Hysteresis loops in the scattered intensity at nor
incidence:~a! d50.5 mm, a54 mm, uq50°; ~b! d50.5 mm, a
54 mm, uq520°; ~c! d51 mm, a54 mm, uq50°; ~d! d51 mm,
a54 mm, uq520°. The frequency isv50.999 99vT and the thick-
ness of the film isD510 nm.
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larger dielectric constant than the incidence~vacuum!.
A single nonlinear integral equation~24! is much easier to

solve numerically than the nonlinear set of differential equ
tions ~2! for the field supplemented by the boundary con
tions ~3! and the incident field~4!. As in the linear case@24#,
the method of moments reduces the integral equation
closed set of algebraic equations~25!, now nonlinear. Even
so, different scattering regimes~defined by the strength o
the random roughness and the strength of the nonlinea!
proved to require different algorithms to solve Eq.~25! nu-
merically. As follows from our analysis in Sec. V, the com
bination of a linear matrix equation solver with iterativ
techniques provides a straightforward method of solving
~25! as long as multiple solutions~bistability! are not
present. Otherwise, approximate methods based on
Kirchhoff approximation can be helpful, although dealin
with the multiple-scattering regime becomes very difficult
this case.

We chose the dielectric function of the nonlinear film
the resonant form~1! in preference to the traditionally as
sumed Kerr-like nonlinearity. This choice gives the possib
ity of changing the dielectric response of the film signi
cantly by small changes of the frequencyv and the
amplitudeA of the incident wave whenv is close to the
excitonic resonance frequencyvT . If the surface is very
rough and the enhanced backscattering peak is well
nounced in the far-field scattered intensity, we were able
obtain the modification of the angular distribution of th
scattered intensity by nonlinear effects by an iterative te
nique. Such nonlinear phenomena as resonant absorption
changing the properties of the film from metallic to dielect
by increasing the amplitude of the incident field modify t
angular intensity distribution, and their effect is especia
well pronounced in the vicinity of the backscattering dire
tion. This is explained by the fact that the enhanced ba
scattering peak occurs due to the constructive interferenc
waves scattered two or more times, which undergo m
nonlinear interactions than singly scattered waves.

The case that proves to be the most difficult for numeri
analysis is scattering in the presence of optical bistabil
The nonlinear terms are by no means small here, and it
tive schemes do not work. However, the use of the Kirchh
approximation showed that the bistability in reflection from
planar system still exists in the scattering from a system w
smoothly rough interfaces. The investigation of bistable
fects in strongly multiple-scattering regimes will be a subje
of future studies.

Thus we have investigated several aspects of the inter
between nonlinearity and disorder in rough surface scat
ing. Our results show that the presence of nonlinearity in
scattering of light from a random surface can lead to sign
cant and interesting phenomena, and the variety of physic
different scattering regimes gives an attractive opportun
for further theoretical and experimental work.
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