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Influence of a resonant surface nonlinearity on the scattering of light
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We study the scattering of light from a one-dimensional, randomly rough surface of a linear dielectric coated
by a thin resonantly nonlinear film. We focus on the coherent scattering phenomena occurring at the frequency
of the incident light and show that the scattering properties of this system can be described by a single,
nonlinear, impedance boundary condition. We obtain thereby a nonlinear integral equation for the electric field
on the surface and present algorithms for its numerical solution in different scattering regimes. We investigate
the effect of nonlinearity on enhanced backscattering from this system, and the effect of random surface
roughness on optical bistability in reflectidi1063-651X98)02206-5

PACS numbdrs): 42.25.Fx, 42.65.Pc, 68.35.Ct

[. INTRODUCTION fundamental frequency. This result was in agreement with
the rigorous numerical simulation results of second-
Theoretical and experimental investigations of multiple-harmonic generation from such surfaces carried out by
scattering effects in the interaction of light with disorderedLeyva-Luceroet al. [14].
nonlinear volume media have been intensively carried out Thus the overwhelming majority of investigations on light
for the past decade. They centered on the enhanced bacseattering from nonlinear disordered volumes or surfaces
scattering effect for second-harmonic light scattered from aoncentrated on the multiple-scattering phenomena that oc-
disordered dielectric slapl,2], difference frequency para- cur at the generated frequenciésrimarily, second har-
metric mixing of two light beams in a disordered nonlinearmonig). In many nonlinear medige.g., Kerr medig how-
medium [3], angular intensity correlation function for ever, the strongest nonlinear effects occur at the frequency of
second-harmonic light generated inside a random dielectrithe incident light. The lack of any quantitative theoretical
waveguidg4], and some other related phenomena. results on the multiple scattering of light from such media is
Disordered nonlinear surface systems, like their volumecaused primarily by the complexity of the theory, even in the
counterparts, have also attracted a good deal of attention ardbsence of disorder. Nevertheless, efforts in this direction are
have proved to manifest coherent multiple-scattering pheexpected to be rewarding, since such systems exhibit diverse
nomena. Thus McGurret al. [5] used a perturbative ap- and intense physical phenomena even in the absence of dis-
proach to predict enhanced second-harmonic generation ofder(e.g., optical bistability, and in the absence of nonlin-
light at a weakly rough, clean metal surface that occurs nogarity (e.g., the enhanced backscattering effeSuch non-
only in the retroreflection direction but also in the direction linear effects as the switching of the interface from one at
normal to the mean scattering surface. The multiple scattemhich total internal reflection occurs to one that transmits
ing of surface plasmon polaritons, excited by the incidentight through it as the intensity of the incident light is in-
light on the rough vacuum-metal interface, plays the decisivereased, and bistable reflection of light from it, were pre-
role in the appearance of both peaks in this theory. This worklicted and subsequently observed experimentdl}. It is
stimulated several experimental studies of second-harmoniaf considerable practical importance to know how the ran-
generation in the multiple scattering of light from metal sur-domness of the interface affects these and other nonlinear
faces[6-10], in which, however, the scattering system waseffects occurring at it. A somewhat qualitative discussion of
not a clean random interface between vacuum and a semiihis question has been presented recently by Bass and Freil-
infinite metal but the random interface with vacuum of a thinikher[16], but with no quantitative results. Another question
metal film deposited on the planar base of a dielectric prisnof interest is how nonlinearity affects the enhanced back-
through which the light was inciderithe Kretschmann at- scattering of light from a random surface.
tenuated total reflection geomelryThe first experimental In this paper we study quantitatively the scattering of
studies of multiple-scattering effects in the second-harmonis-polarized light from the one-dimensional random surface
generation of light scattered from a clean one-dimensionabf a semi-infinite linear dielectric medium on which a thin
vacuum-metal interface were carried out in a series of papermsonlinear semiconducting film of constant thickness is de-
by O’Donnell and his colleagudd1-13, in which it was  posited. The frequency of the incident light is assumed to be
found that for both weakly and strongly rough surfaces a digclose to that of the excitonic resonance in the film, so that the
is present in the retroreflection direction in the angular dereflecting and absorbing properties of the surface are very
pendence of the intensity of the scattered second-harmongensitive to the intensity of the incident electromagnetic field
light rather than the peak that occurs in scattering at thend to the resulting field distribution on the rough vacuum-
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(nonlineay dielectric interface. This nonlinear, thin film sys- present the conclusion drawn from the results obtained in

tem was chosen becauég it is experimentally realizable, this work.

(ii) the equations that have to be solved can be reduced to a

tractable form in this ca;télii) nonlinear planar !ayerc_—zd SYS= || FORMULATION OF THE SCATTERING PROBLEM:

Fem; are knownﬁl_?] to d|§play the _effect of optlcal bistabil- GEOMETRY AND BASIC EQUATIONS

ity in the reflection of light, and(iiv) rough film systems

provide an additional degree of freedom compared to sys- The physical system we investigate is depicted in Fig. 1.

tems with a single rough interface, and therefore allow easielt consists of vacuum in the region>{(x;) + D (region ),

manipulating with parameters of the system to achieve de nonlinear semiconductor film in the regigtx,) + D>x3

sired scattering characteristics or even produce new coherefit{(X1) (region 1)), and a linear dielectric substrate in the

scattering phenomerja8—20. region x3<<{(x,) (region lll). The surface profile function
Finally, there is a methodological consideration prompt-¢(X1) is assumed to be a single-valued functiorxgfthatis

ing this work. In a rigorous computer simulation study of the@ Stationary Gaussian process defined by the properties

scattering light from, and its transmission through, a lineax{(x1))=0 and ({(x;){(x;))=8*W(|x;—x3|), where the

film with one-dimensional random surfaces, the applicatiorangle brackets denote an average over the ensemble of real-

of Green’s second integral identity in the plaf®i] yields izations of the surface profile and=\(¢%(x,)) is the rms

the result that the value of the electromagnetic field at anyeight of the surface. The surface height autocorrelation

point in space is given in terms of integrals along the curveunction is assumed to be given by(|xl|)=exp(—x§/a2),

bounding the film. In contrast, when the film is characterizedwhere a is the transverse correlation length of the surface

by a nonlinear dielectric function instead of by a linear one,roughness.

these line integrals are supplemented by an integral taken We consider the steady-state scattering of monochromatic

throughout the area bounded by the curves along which thikght, and assume the time dependence of the electric field of

line integrals are evaluated, in which the field being soughthe form E(x;t)=E(x)exp(—iwt), where x=(X;,X5,X3) is

enters the integrand nonlinearly. The result is a very computhe position vector and is time. We suppress the depen-

tationally intense problem. In the present case we overcomeéence onw in E(X) since no other frequencies are present.

this problem, at least in part, by assuming that the thickness We model the steady-state material response of the non-

of the nonlinear film is small compared to the wavelength oflinear semiconductor film by introducing the nonlinear di-

the incident light, and using an impedance boundary condielectric function

tion at the interface between the nonlinear film and the linear

substrate, to derive an effective, nonlinear, boundary condi- 2_ w2 i wy— alw)|E?

tion that the electromagnetic field in the vacuum region sat- si(w|E[)=¢. w e TleoyTale ’

isfies on the surface of the substrate. In this way we obtain a w%— w’—iwy— a(w)|E|?

single, one-dimensional, nonlinear integral equation for the

value .Of the eIectrjc field on the sgrface., which i$ S.Olvedwhich depends on the frequeneay and the local intensity
numerically for a given value of the intensity of the 'nc'dentlj?E“(x)F of the field in the film. In Eq(1) ¢.. is the optical

field. The angular dependence of the intensity of the cohere Fequency dielectric constanty; is the frequency of the

af?d incoherent components of Fhe scattered light are O?fransverse exciton of infinite wavelength, is the frequency
tained by repeating this calculation for a large number o

) of the longitudinal exciton of infinite wavelength, is the
results over this ensemble. This program is carried out fo?haemﬁ;nqgureeggy?;égz;?::tv igsriiﬁzgrtogz:\?aﬁoec':zf,ihnd)e;(sample
each of a set of values of the intensity of the incident field. ItOf a material whose dielectric properties can be.described by
is hoped that this approach will be useful in the solution of &he function(1) is AlGaAs [22]. The substrate is described
variety of scattering problems in which the scattering systeni)y a linear, real, and positive .dielectric functiefio)

is a thin nonlinear film with one or two random surfaces. We will étudy,the scattering of asrpolarized elect.romag-

Th? outline of th|§ paper is the follqwmg. In S_ec. I We hetic field, since the enhanced backscattering effect is more
describe the scattering system and write the basic equations

o - ronounced ins polarization than inp polarization in the
and the boundary conditions for the electric field. We thengcattering from dielectric substratez3]. The plane of inci-

specify the form of the incident field and define the charac—dence fors-nolarized liaht is thexx. plane and the onl
teristics of the scattered intensity we are going to calculate. P 9 X3 P Y,
In Sec. Il we derive the effective nonlinear boundary con-
dition for the electric field in the vacuum region. We will use

this boundary condition in Sec. IV to derive the nonlinear

@

X3

integral equation for the electric field on the surface of the O | 8,

substrate. This integral equation is then reduced to a system vacuum, [ x3= §(x,)+D

of coupled, nonlinear, algebraic equations with the aid of the ’MW e
method of moments. In Sec. V we discuss the numerical 11%ar’dielecmcﬁlml/l@ %,IEI% ¥

solution of this nonlinear system of equations in different \'\
scattering regimes, in particular, the regime when optical bi- &Mdiekcmm
AN

&(w)
stability is present. We also present numerical results that \\\\\\\\ & \\\
illustrate modification of the enhanced backscattering phe-

nomenon due to nonlinear effects. Finally, in Sec. VI we FIG. 1. Scattering geometry.
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nonzero Cartesian component of the electric field is perpenwhere the scattering amplitud¢é,, 6,) is given by
dicular to the plane of incidence and satisfies the equations

oo i w i
2 R W2 mdxl exp{ =i E{xlslnf)q
PRV ANE)

r(0q,0k)=f
Eb(X1,X3)=0, X3>{(x;)+D (28

+[ (%) + D]cosﬂq}]
2 2 2
M2y % | e _
g‘f‘g‘f‘&‘f((vJEz )g EZ(X]_,X3)—0, @ - | |
1 3 X |E[g”(x1)sm6q—coseq]E (X9)—F'(xq) |-
g(xl)_’_ D>X3>§(X1) (Zb) (7)
S w? The depend inci i
I B pendence of 6,,6,) on the angle of incidence, is
a_xf+ a_xg’Ls(“’)? E2 (X1.X3) =0, X3<{(X1) implicit, through the source functions

29 E'(x1) =E(x; (%) + D), (8a

together with the boundary conditions that the field and its
normal derivative are continuous across the interfaces,

J J
| — |
F (X1)= _g,(xl)_axl+ _aXS EZ(X1'X3)|X3=§(X1)+D .

E5(x1,{(Xy) +D)=Ej(xy,{(x;) +D), (33 8b)

ED(x1,4(x1))=E} (X1,(x1)), (3b)  We characterize the scattered intensity by the average of the
differential reflection coefficien{DRC), which gives the
| fraction of the total energy incident onto the surface that is
E2(X1:X3) = x40 scattered into an angular intervab, about 6,

N
J— X [— [—
& 1)<9x1 X3

. <‘9R/‘90q>:<Psc( Hkaaq)/Pinc>- )

I
E2(X11X3)|x3:§(x1)+D )

J J
—{(X)o —t o
1 8 In the absence of the nonlinear film, this function is known
(30 [23] to display an enhanced backscattering peak, associated
with the diffuse component of the scattered light, and ap-
E (x,x3)] pearing due to the constructive interference of multiply scat-
21711737 Ixg=4(xq) tered waves provided the roughness parameieasda are
of the order of the wavelength=2/c.

With the aid of Eq.(5) and Eq.(6) we rewrite Eq.(9) as

NI
{ (Xl)axl %

i
= (Xlax3)|x3:§(xl) .

N PN
= §(X1)&X1 X3 )

87w

1
(3d) (dRII04)= LiA%costy| (Ir(6k,09]%). (10

We assume that the scattering system is illuminated from

the vacuum side by a plane wave, described by the electriEherefore to calculate the mean DRC we need to calculate
field the source functiong8), which yieldr (6, 6,) through Eq.

(7). To do that, we have to solve Eq®) with the boundary
EL(X1,X3)inc=Aexp{i (w/C)(x;Sinf—Xx5c089,)}, (4)  conditions(3) for the incident field(4). Although the meth-
ods of solution of the linear problem f&'(x;) andF'(x;)
where the constam is the real amplitude of the incident are well developed at the present time, e.g., the method of
wave andgy is the angle of incidence. The magnitude of themomentq 24,20, no nonlinear version of these methods has

total, time-averaged incident fluR;, is given by existed until now. In the next sections we develop a method
5 that allows calculating the source functions in the case when
P —L.L i 5 the nonlinear film is so thin that nonlinear effects can be
inc— 12 COS@k, ( ) . . i .
8w taken into account by an appropriate modification of the

) boundary conditions at the vacuum-linear dielectric inter-
whereL ; andL, are the lengths of the surface in tkeand  f5ce.

X, directions, respectively.

. To f'ntd.the f.art'f'e'd scatftelged |tnhten3|t3{ n dthe I"aC“d“F"’ t';']p IIl. NONLINEAR EFFECTIVE IMPEDANCE BOUNDARY
0 a certain point we can follow the route developed in the " X S S D RIG

linear theory|24). Namely, we apply Green's second integral  ,ocace COATED BY A THIN NONLINEAR FILM

identity to region | to obtain the time-averaged incident flux

scattered into an angular intervdb, about the scattering Typically for nonlinear problems, it is hopeless to look for
direction defined by the angie,: the general solution of the scattering problem formulated in
the preceding section. Instead, one tries to specify the range
of system parameters, in which most of the interesting physi-
cal phenomena are displayed and in which the general equa-

2
c
Psc(9k,9q)=Lzm|f(0k.0q)|21 (6)



57 INFLUENCE OF A RESONANT SURFAE ... 7209
tions can be reduced to a more tractable form. This is the J J
approach that will be taken here. We first assume that the [—5'(X1)07+ v
film thicknessD is small compared to the wavelengthof 1o
the incident light. This will allow deriving nonlinear effec-

tive boundary conditions at;= {(x,) that approximately re- =-D
late the field and its normal derivative in the vacuum to their

counterparts in the dielectric. Thus one will be able to write_. . . I
the general solution for the field everywhere, since the buIRSlnce we seek an approxmaf[e relation bethé_rand E
nonlinear medium will be excluded from the problem. Sec- Xs={(X1), we use Eq(3d) in the left hand side of Eqg.
ond, we consider a physically interesting frequency regiorf13 and replacee; by E; . Then, we notice that

around the frequencw+ of the excitonic resonance in the P P 9 P
film, so that the reflecting and absorbing properties of the §’(X1)—:{—+§'(X1)—] -

surface become very sensitive to the amplitude of the inci- Xz | 9% IX3) Xy

der;t flelc'i:_anﬁ the resulting tf;}el;jﬂ(]dlstrlbutl'c;ndon ftr,:ﬁ r.ough.vvhere the term in the curly brackets is the tangential deriva-
rswlejx;ya(é)%ticlar}as)k/;nwge?)?rsduj(i /w‘;‘[_s(g?]g_nll,; o? t%e Seu'br?ag'five. Since_tangential derivatiye of _the field i_s continuous
strate is small compared to. This assumption allows writ- across the interfaces, we obtain to first ordeDin

ing an approximate local relatidr23] between the electric
field and its normal derivative in region lll, evaluatedxat

|[E|2_ Eg]|x3={(xl)

(92 2
[E2—Exllg-cory - (13)

(?XlaX3 axg

) J J I =l
- (Xl)a_xl+ X [E>—E; ]|x3:§(x1)

={(x)—D,
2 &2
=—D|—+ —|[Eb—Eblxccixy- (14
ﬁXi aX% [ 2 2]|X3 {(Xl)

M
E; (X1 1X3)|x3=§(x1)

{ £ (%)t —
Xy 0% We next use Eq€2a), (2b), and(34) in the right hand side of
=K(X1)E5 (X1,X3) [z e(x0) » (11)  Ed.(14), keeping only the terms of zeroth order@nin the
§ o fields, since the right hand side itself is already proportional
to D, and obtain

where

—'( )i+i E|_E|”|
'(Xq %, axg[ 27 E2 llxg=20x)
B(Xy) d {"(xy)  d?["(x)]? 2
I A e R B =D (1= BB sy (19

This is the first of the two effective boundary conditions. The
second one is obtained by expanding both sides of(&a).
in the vicinity of x3= {(xy),

is the local surface impedance andp(x;)={1
+[Z'(x1) 1?2 This last assumption is not very essential in
our analysigunlike the first ong but is very useful since it
halves the number of equations to be solved numerically and P
saves a great deal of computer time. The utility of the im- E'2|X3:§<Xl)+ D&—E'2|X =£(xy)
" . d , X3 37

pedance boundary conditiofll) in computer simulation
studies of the scattering of light from randomly rough linear J
dielectric surfaces was demonstrated by Maradudin and = Eg|x3=§(xl>+ DKmeS:g(xl)- (16)
Mendez[23]. 3

We will now show that in the case of a thin nonlinear film \we notice that
one can simplify the system of equatiaf@3 with the bound-
ary conditions(3) considerably. Namely, we will reduce the d 1
problem to the solution of just two equations in the regions ,9_)(35 #(Xq)
X3>{(X1) (vacuum and x3<{(x;) (linear dielectri¢, and
two effective boundary conditions that take into account thevhered/dn and d/dr are the normal and tangential deriva-
influence of the thin nonlinear film. We will then further tives on the surfacexg={(x;), respectively. Since both
simplify the problem by using the impedance approximation.gE, /dn andJE,/dJ+ are continuous across the interfaces for
The method of effective boundary conditions proves to behe s-polarized field, we have the following result correct to
very useful for linear electromagnetic problems where thinfirst order inD:
films are presenf25], although it has not yet been used in
the context of scattering from rough films. Here we develop E'2|x3=§(xl)= Eg'|X3=§(Xl>. (18
this method for the scattering of light from a randomly
rough, thin, nonlinear film deposited on a linear substrate. This is the second effective boundary condition that connects

Assuming that the electric field inside the film changesthe fields in the media | and lll. Thus we have simplified the
little in the x5 direction, we expand both sides of Ec) in scattering problem, since we now need to solve only linear
the vicinity of x3= {(x,) to first order inD: differential equations in regions | and Ill, and the nonlinear-

J J
on ot

, (17)
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ity is present only in the effective boundary conditi¢ib).

Jd
We simplify the problem even more by using the impedance F(Xl)E[ —€’(X1)3—Xl+ E2(X1,X3)|xy=¢(xy) »

boundary condition11) in Egs. (15 and(18). As a result, %3 (22b)
we obtain a single, nonlinear effective impedance boundary
condition for the electric field}: the kernelsH, andL, are expressed in terms of the Hankel
function of the first kind,
! 0—' EI
§(X1)(9—Xl+(7—x3 2|x3:g(xl) i J 0] e ,
Ho(X1|x1) =~ —¢'(x)—+ —|Ho (_{(Xl_xi)

=Keii(X1,| B2l Edlug=z0xy) » (19 4 IXy X3 ¢

where +[ (X)) — x5+ 7;]2}1’2] , (233
X3:§(Xi)
2
]2 o D 12
Keit(X1,|E2[) =K(x)+ — W[l—sf(wJEﬂ )]
c? ¢(xy Lo(X1|x1)
(20)
w
is the local nonlinear effective impedance, and the local lin- =(i/4)H§)1>{E{(Xl—xi)er[Z(Xl)—Z(Xi)+ 714,
ear impedanc&(x,) is given by Eq.(12).
(23b

IV. METHOD OF MOMENTS _ S _ ]
and 7 is a positive infinitesimal. Using the effective bound-

We will next employ the effective boundary condition ary condition(19), we obtain a single integral equation for
(199 to obtain the nonlinear integral equation for E(x,):
E,(x1,¢(X;)) — the source function that completely deter-
mines the scattered field in the vacuum. The standard way of
deriving a closed system of integral equations for the field _ 2 /
E,(x1,X3) and its normal derivative at the interface, devel- E(Xl)_EZ(Xl’g(Xl))i“°+J wdxl[HO(Xllxl)
oped in the linear theory24], fails when the problem in-
volves a bulk nonlinear medium. However, since in our for- —Ker(X1,|Ex(x) [DLo(Xe[XD) JE(X1). (24
mulation of the problem the nonlinearity now enters only
through the effective boundary conditi¢h9), the derivation ~ In the method of moments, we replace the infinite range of

can be done in the same way as in the linear a4k with  integration by the finite range~(L/2,L/2) and divide the
the result latter into N equal intervals. The functions in ER4) are

calculated at the midpoints of these intervalg=—L/2

. +(n—1/2)Ax (n=1,2,3 ... N) where Ax=L/N, as de-
E(Xl):Elz(leg(Xl))inc_l'J’ dx![Ho(x X)) E(X)) scribed by 'Mafadudm and I\rjelez for .the linear prqblem
— corresponding in our case @=0. The integral equation is

, , then converted into the matrix equation,
—Lo(xa|x)F(x1)], (2D
N

ol , 2
where the source functio&x,) andF(x,) are now defined E(Xm) = 2E2(Xm £ (Xm) Jinc + nzl M (| E(Xn) [D)E(Xn),
by (29

E(X1)=Eb(X1,{(X1)), (228 where

AX

i ) @? HE (/)0 =%n)*+ [ 0tm) = {20 1)
(@IS {(Xm—Xn) 2+ [L(Xm) — L (%) ]2HY2

2

><{(Xm_ Xn)éw(xn) - [g(xm) - {(Xn)]}_ Ax Iz) Keff(xn 1|E(Xn)|2)
XHEP (/) {(Xm—Xn) 2+ [{(Xm) — LX) 12D, m#n (263

¢"(Xm) w qS(xm)Ax) B
—F 1/, m=n.

O L @@
L 2 d2x) Ax(z)Keﬁ(Xm’|E(Xm>|2)Ho< 26

c (26b)
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The remaining problem is to solve E@5) for E(x,,) for
each realization of the surface profif¢x,), which can be
generated for gived anda by standard algorithm24]. The
solution should be used to calculate the scattering amplitude
r(6q,6), which is now written as

Dielectric function

N W -
r(Hq,Gk)=Ax2 ex —|E[xmsm6q+ {(Xm)costy]
m=1

10 - 1

X[ [Z' (X Sinfy— OS]

Dielectri¢ function

[
T

_Keﬁ(xmr|E(Xm)|2) E(Xm)- (27)

This procedure should be performed for a large nuniger
of realizations of the surface profile to do the ensemble av-
eraging in Eq(10).

The numerical solution of the set ™ equations(25)
proves to be much more complicated than it is in the linear
problem, that just requires the use of any standard linear 0 ! 2 3 4
matrix equation solver. Our numerical simulations of the few
cases of physical interest, presented in the next section, in- F|G. 2. Real and imaginary parts of the dielectric function
dicate that the method for each scattering regime and,(w;|E|?) of the nonlinear AlGaAs film plotted versus the field
strength of nonlinearity should be carefully and appropriatelyamplitudeE normalized to the characteristic amplituig at a fixed
chosen. Methods which may work perfectly in some regimesgrequency »: (A) @=1.0000%;, (B) ©=0.999%:, (C) w
fail in other cases, especially when multiple solutions are=0.9999%- .
present.

Dielectric function

The behavior ofe;(w,|E|?) as a function of E|? for a
fixed frequency can be very different depending on how
close we are tw and whethew is above or beloww. We
A. Dielectric properties of the AIGaAs/GaAs system illustrate this variety by considering three values ©f

We first discuss the dielectric properties of the scattering'@mely, ©@=1.0000kr,  ©=0.999%y, and o
system. In our numerical calculations we assume that the 0-999 9%, shown in Figs. &A) 2(B), and 2C), respec-
substrate is GaAs, whose dielectric constaris frequency tively. One sees from these examples that different local field

independent. This assumption holds for the frequencies sulntensities can cause the film to behave like a metal, or like a
ficiently higher than the frequency, of the longitudinal dlele(_:trlc, can cause very high absorption or alm_ost no _ab-
exciton in GaAs, where:(w) is just given by its limiting sorption. We now turn to the use of these three illustrative

value s, =12.6. We choose AlGaAs for the film, whose di- €2S€S in our numerical solution of the scattering problem.
electric properties can be modeled by the resonant dielectric
function (1). This choice of the scattering system is stimu- B. The use of iterative techniques in the study of the enhanced
lated by the wide use of AIGaAs/GaAs structures in modern  backscattering effect in the presence of nonlinearity
technology and experimeng2]. The properties of Eq(l) To investigate the role of nonlinearity in the multiple scat-
for AlGaAs are characterized by, =12.6, and the values of tering of light, we assume the surface to be very rough, with
® =12219.6 cm ' and wr=12219 cm ' that are very parameter$=1.6 um anda=2.65 um, since the scattering
close to each othdR6]. The values of the damping constant of light whose frequency is near @ from such a surface
y and nonlinear parameter(w) can be regulated by chang- with no nonlinear film gives rise to a well-pronounced en-
ing the temperature of the systef@2]. The characteristic hanced backscattering peak. We study the effect caused by
value of y for AlGaAs is very small, typically of the order of the presence of an AlGaAs film of thickne®s= 10 nm, and
10 w7, and this also makes the use of AlGaAs in studyingfirst consider the scattering sfpolarized light of frequency
resonant nonlinear phenomena very attractive. »=1.000 0. The dielectric function of the film at this
We will adopt the convention of normalizing the ampli- frequency, plotted versus the field amplitude, is shown in
tude of the electric field to the vall®, that yields the typical Fig. 2A).
experimental valug[22] of the field intensity ¢/4w)Ej In the numerical solution of the nonlinear matrix equation
=10" W/cm?. The typical value of the parametef{w) in (25 for E(x,) we applied the following algorithm. We
the vicinity of resonant frequency,, estimated from the started by taking a small amplitude of the incident field
experimental data of Parkt al. [22], is given by aEj/ w3  A,,,=0.05E, to ensure that the nonlinear term in the effec-
~10 *+i10"°. Note that the sign of the imaginary part can tive impedancé20) is negligible and solved the matrix equa-
be positive or negative, depending on the frequeacgnd tion (25) in the absence of the nonlinearity exactly, assuming
the temperature of our system. the number of points on the surface to He=300 and the

V. NUMERICAL SOLUTION AND RESULTS
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FIG. 3. Mean differential reflection for the light of frequency
®»=1.000 0w scattered from a system characterized &by 1.6 FIG. 4. Function(aR/&ﬂq) versus the amplitude of the incident
um, a= 265’um’ D=100 A The number of poin’[s on the surface field for fixed angles of incidence and Scatterir@:: 10°, 0q=
is N=300 and the number of realizationsNg=2000. The incident ~ —10° (solid lin), and 6= 30° (dashed ling The parameters of the
beam is described by the angle of incidemfige- 10°, and amplitude ~ System are the same as in Fig. 3 ane 1.000 Olvy.

A, which is(a) 0.25,, (b) 3E, (c) 6Ey, and(d) 9E,,.

The behavior ofe(w;|E|?) shown in Fig. 2A) implies
that the incident wave of low intensity “sees” essentially a
thin metallic film deposited on a dielectric substrate. Con-
versely, the wave of high intensity effectively is likely to
give rise to the field of high intensity in the film, and the
effective dielectric constant of the film is close 4g. The

length of the surface along thg direction to bel =30 um.
Then we increased the incident field amplitudeby the
small stepAA=0.05E, and substituted the arrd(x,,) ob-
tained at the preceding step iNtqu(Xm,|E(Xm)|?). We
solved the resulting linear matrix equation f&fx,,), used
the solution to calculatseq(Xm,|E(Xm)|?), and repeated the wave incident from the vacuum interacts more strongly with
iterations over and over until convergence was reached-  the medium whose optical density differs significantly from
ally no more than four iterations were needed to reach aghat of the vacuum. This is why the enhanced backscattering
accuracy of 2% Only then did we increase the amplitude of peak that occurs due to the constructive interference of the
the incident fieldA by the same small amount. For this new multiply scattered waves is knowi24] to be most intense
value of A we repeated the iteration procedure again, andor metals with a large and negative dielectric constant or
continued increasing up to the desired large valu@ this  dielectrics with a large and positive dielectric constant.
case we tookA.,,,= 10E,, where the nonlinear response of Therefore we expect the scattered intensity to have its
the system reached saturatioRor each value oA the cal- maxima in the limitsA—0 andA—~, whereA is the am-
culated functionE(x;) was used to find the other source plitude of the incident field. Figure 4 shows that the effect is
functionF(x,), with the aid of Eq(19), and then both func- most visible in the vicinity of the backscattering peak, which
tions were used to calculate the scattering amplitudeaccumulates contributions from the waves that undergo sev-
r(6q,6). We then repeated the same procedure, but nowral nonlinear interactions.
decreasing the amplitud® from A, t0 Anin to see if any We next look at the scattering of light from the same
difference between the direct and reverse iterations existesystem, but at the frequeney=0.9999 . Figure ZB) il-
due to possible hysteresis behavior, and found none. Whistrates the experimental fact that at the frequencies just
were able to find thereby(6,,6,) for any amplitudeA of  belowwy the absorption in AIGaAs becomes important. Nei-
the incident field forN,=2000 realizations of the surface ther very low nor very highA’s can yield a field distribution
profile and to calculate the mean DRC from H@0) by inside the film that gives rise to noticeable absorption —
averaging the results over the ensemble of realizations adnly the intermediate values can. The computer simulation
{(x4) for each fixedA. carried out by the iterative technique developed for the case
Figure 3 shows the mean DRC for four different ampli- (A) confirms this expectation. Figure 5, which presents
tudes of the field incident a,=10° on the scattering sys- (JR/d6 for 6,=10°, 6,=—10° and ,=10°, 6,=30°,
tem. Nonzero values of the DRC ét= +90° appear due to demonstrates that the resonant absorption in the film sup-
the use of the effective boundary conditions, and correspongdresses the scattered intensity in the vacuum for intermediate
to the energy captured inside the film. We see that the heightalues of A. Again, the effect is especially pronounced for
of the enhanced backscattering peak decreases as we increése multiply scattered component of the scattered light.
A and then begins to increase until it saturates. This nonlin- Both cases considered above illustrate that nonlinear ef-
ear effect, somewhat better illustrated in Fig. 4, showingfects can lead to rather significant changes in the far-field
(dRI36y) versusA for 6,=—10° (retroreflection direction  scattered intensity. As long as there are no multiple solu-
and 6,=30°, can be explained as follows. tions, the combination of a linear matrix equation solver with
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flected from a plane tangent to the surface at each point,
an iterative technique described above gives a robust argccording to Eq.(28). Omitting the details, which can be
efficient way of solving the scattering problem numerically. found in the paper by Sentenac and MaradJdw] in the
linear case, we point out the essential part peculiar to the
C. Scattering from a rough surface in the presence of optical nonlinear problem and caused by the non-single-valued
bistability. Kirchhoff approximation Fresnel QOeﬁ'C'enRo(akJAlz)_ as a function ofA. We
i . solved this problem by defining two single-valued Fresnel
We, finally, consider the case when ER5) allows more  cqefficients, and the scattered fields associated with these
than a single solution. To do this, we set the frequency veryoefficients:(i) “forward,” defined by the curveABCEFin
close to the resonance:=0.999 9%+ . The dielectric func- Fig. 6, and(ii) “backward,” defined by the curvé EDBA
tion of the film at this frequency is shown in Fig(Q@. in Fig. 6.
We first note that the film of AlGaAs witld =10 nm, In our numerical simulations we assumed the roughness
deposited on a GaAs substrate, gives a bistable respong@rameters to be given ly=4 um and6=0.5 um and 1
when there is no surface rOUghne%(O). The total field in um (the latter being on the edge of app||cab|||ty of the

the vacuum in this case can be written as Kirchhoff approximation. First of all, we checked the valid-
| _ . . ity of the Kirchhoff approximation by substituting the values
E5(X1,X3) = Aexp{i (w/C)(X1SiNf— X300, ) } of E(x,) obtained into the original equatid@5) and found
+ARy( 0, |Al2) expli (/) (X,5ind, that both the “forward” and “backward” solutions satisfied
Eqg. (25) quite well. Then we calculated the mean DRC for
+X3C0Hy) }, (28 normal incidence and obtained that the hysteresis loop is

where the first term gives the incident field and the secon@bserved in the entire range of the scattering angles. Several

term gives the reflected field and is defined by the intensity€*@mples of this behavior are shown in Fig. 7. The compari-
dependent, complex Fresnel coefficieRy(6,,|A[?). A SON of the absolute values of the DRC shows the expected

straightforward solution foR,(6y,|A|2) gives a curve that results: rougher surfaces produce the scattered intensity

displays a non-single-valued dependenceidior all angles which is more uniformly distributed between the small and
of incidence 6. In Fig. 6 we plot the reflectivity large scattering angles than it is in the case of less rough

|Ro(6k,|A|?)|? for the case of normal incidence)=0°. surfaces.

g atin i Thus the single-scattering component, calculated with the
This d d h h teristic bistable f@bsent
forltsheecgigs)egcleoogsoi caﬁ:jaa(j:er(l)sggggi)s abi the W:; aid of the Kirchhoff approximation, displays the bistable ef-
with the unstable. part shgwn by thé dashgc’i line fects existing in the reflection from the planar system. The
The presence of optical bistability significantly hampersqueStlon Of. the fate O.f optical bistability n the regime of
the numerical solution of the scattering problem. The itera>oNY multiple scattering has to _be Spec'?‘".y Stqd'ed in the
tion scheme described in the preceding subsection and othg‘fture' The most likely outcome, in our opinion, is the deg-

iteration techniques we tried showed either poor or no confadation of bistable effects since, for a very rough surface,

vergence. The use of more sophisticated numerical methodB€ qual responses of Qiﬁerent parts of the surface can l_)e
is impeded by the large numbiir=300 of coupled nonlinear very different, and the bistable effects can be washed out in

equations to be solved for at least 1000 realizations of théhe accumulated response.
surfgcg proﬁlg and for at least 20 values of the amplitude of VI. CONCLUSIONS
the incident field.
To find out whether bistable response still exists in the This paper presents, to our knowledge, the first quantita-
presence of surface roughness, we apply the Kirchhoff aptive investigation of the multiple scattering of light from the
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09 ' "o 09 ' e larger dielectric constant than the incidergacuun).
07— 1 oql | A single nonlinear integral equati@@4) is much easier to
A A solve numerically than the nonlinear set of differential equa-
Sosr 1 i\@O-S - ] tions (2) for the field supplemented by the boundary condi-
5 15 /L tions (3) and the incident fieldd). As in the linear casf24],
’ ‘ the method of moments reduces the integral equation to a
' ! ' closed set of algebraic equatio(5), now nonlinear. Even
1 2 3 4 . . . .
AJE, so, different scattering regimesefined by the strength of

. w . the random roughness and the strength of the nonlingarity
proved to require different algorithms to solve E85) nu-
merically. As follows from our analysis in Sec. V, the com-
bination of a linear matrix equation solver with iterative
. techniques provides a straightforward method of solving Eq.
(25 as long as multiple solutiongbistability) are not
ol . ‘ ‘ ol . ‘ . present. Otherwise, approximate methods based on the
ot A/zEO o o ! A/ZEO o Kirchhoff approximation can be helpful, although dealing
. . _ . with the multiple-scattering regime becomes very difficult in
_ _FIG. 7. Hysteresis loops in the scattcired intensity at normakhiS case.
incidence: (@) 6=0.5 um, a=4 um, 6,=0% (b) 6=0.5 um, a We chose the dielectric function of the nonlinear film in
=4 um, 05=20° () 9=1 pm, a=4 um, =07 (d) =1 um, the resonant forn{l) in preference to the traditionally as-
a=4 um, 6,=20°. The frequency i&=0.999 9% and the thick- . . . . . - o
ness of the film i<D =10 nm. sumed Kerr-like nonlinearity. This choice gives the possibil-
ity of changing the dielectric response of the film signifi-
cantly by small changes of the frequeney and the
] ) amplitude A of the incident wave whem is close to the
randomly rough surface of a nonlinear medium. The workaycitonic resonance frequenay;. If the surface is very
was directed at the following as yet unstudied physical pheroygh and the enhanced backscattering peak is well pro-
nomena:(i) the coherent enhanced backscattering effect ihounced in the far-field scattered intensity, we were able to
rough surface scattering in the presence of nonlinearity, angptain the modification of the angular distribution of the
(if) bistability in reflection in the presence of random rough-scattered intensity by nonlinear effects by an iterative tech-
ness. The theoretical inveStigation of such nonlinear Scattehique' Such nonlinear phenomena as resonant absorption and
ing problems is always very difficult and cannot be treatedchanging the properties of the film from metallic to dielectric
by conventional “linear” methods, since it is impossible to py increasing the amplitude of the incident field modify the
write a general expression for the electromagnetic field in &ngular intensity distribution, and their effect is especially
nonlinear medium. The methods of deriving integral equawell pronounced in the vicinity of the backscattering direc-
tions for the fields at the interfaces fail as long as one deal§on. This is explained by the fact that the enhanced back-
with a bulk nonlinear medium. Therefore additional, meth-scattering peak occurs due to the constructive interference of
odological, subjects of this work we(éi) the derivation of  waves scattered two or more times, which undergo more
equations that give an adequate description of physical pheronlinear interactions than singly scattered waves.
nomena(i) and (i), and have a form tractable to numerical  The case that proves to be the most difficult for numerical
analysis; andiv) development of numerical algorithms for anpalysis is scattering in the presence of optical bistability.
solving these equations. The nonlinear terms are by no means small here, and itera-
We first showed that the nonlinear scattering problem isjve schemes do not work. However, the use of the Kirchhoff
greatly simplified when the nonlinearity is localized in a thin approximation showed that the bistability in reflection from a
layer near the surface — in our work this was modeled bypjanar system still exists in the scattering from a system with
the presence of a thin nonlinear film on the randomly roughsmoothly rough interfaces. The investigation of bistable ef-
surface of a semi-infinite linear substrate. We demonstratefbcts in Strong|y mu|tip|e-sca’[tering regimes will be a Subject
that in the case when the film thickness is small compared tef future studies.
the wavelength of the incident light, the presence of a thin . Thus we have investigated several aspects of the interplay
nonlinear film can be taken into account through non“nealbetween non"nearity and disorder in rough surface scatter-
effective boundary conditions on the surface of a linear subing. Our results show that the presence of nonlinearity in the
strate. For the case of apolarized wave incident on the scattering of light from a random surface can lead to signifi-
one-dimensional rough surface of a nonlinear film deposite@ant and interesting phenomena, and the variety of physically
on a substrate we derived these effective boundary condifferent scattering regimes gives an attractive opportunity
tions [Egs. (15) and (18)]. Under the assumption that the for further theoretical and experimental work.
substrate is significantly optically denser medium than the
medium of incidence(vacuum, we used these boundary
conditions to derive a single, nonlinear, impedance boundary ACKNOWLEDGMENTS
condition for the electric field. Finally, with the aid of this
boundary condition to obtain a single, nonlinear, integral This research was supported in part by Army Research
equation(24) for the electric field on the surface of the sub- Office Grant No. DAAH 04-96-1-0187. T. A. L. also ac-
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